Rhythm in Music, Encoded in Neural Networks, and in the Mind

Authors

DOI:

https://doi.org/10.5281/zenodo.10874430

Abstract

Rhythm is ubiquitous in nature and has fascinated scholars from times immemorial. Rhythmic activity also underlies many forms of communicative interaction both in biology and in artificial computational systems. A rapidly growing issue, both in technology and philosophy, is whether this kind of communicative interaction from the most sophisticated applications of artificial intelligence (AI) is comparable to the interaction of human beings and their minds. A now historic debate on this quickly suffers from exceeding the limits that must be imposed on the use of terms from different reference domains, like the concept of intentionality and the emergence of conscious representations in a mental world. In this paper rhythm in music, with its characteristic roots in a culture, is explored as a representation of encoded information with particular Gestalt character, but meanwhile, in the composition of modulated frequencies, also comparable to the oscillatory activity in neural networks. Rhythm in music is a complex phenomenon and the carrier or “medium” of meaningful representations, while it can ultimately be traced back to modulated oscillations in sound waves, the auditory system and related sensorimotor and information supporting networks in the brain. The phenomenon of rhythm in music is explored, in such a way that it becomes clear why it can serve as an illustrative representation for the comparison of “intelligence” in the living brain and that in AI.

Keywords:

Rhythm in music, neural networks, artificial intelligence, embodied cognition, encoded information, Gestalt, intentionality.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Peter von Domburg, Clinical Neurologist, Kapelweg 2, 6267 BW Cadier en Keer, The Netherlands

Kapelweg 2, 6267 BW Cadier en Keer, The Netherlands

References

Allman J. M, Tetreault N. A, Hakeem A. Y, Manaye K. F, Semendeferi K, Erwin J. M, et al. The von Economo neurons in fronto-insular and anterior cingulate cortex. Annals of the New York Academy of Sciences 2011; 1225: 59–71.

Ahw E, Belopolsky A. V, Theeuwes J. Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences 2012; 16(8): 437-443.

Bellinger D, Altenmüller E, Volkmann J. Perception of time in music of patients with Parkinson’s disease – The processing of musical syntax compensates for rhythmic deficits. Frontiers in Neuroscience 2017; 11:68.

Bennett M. R. and Hacker P.M.S. Philosophical Foundations of Neuroscience. Blackwell Publishing Ltd, Oxford 2003.

Berwick R. C, Friederici A. D, Chomsky N, Bolhuis J. J. Evolution, brain, and the nature of language. Trends in Cognitive Sciences 2013; 7(2): 89-98.

Beste C, Münchau A, Frings C. Towards a systematization of brain oscillatory activity in actions. Communications Biology 2023; 6:137

Billig A. J, Lad M, Sedley W, Griffiths T. D. The hearing hippocampus. Progress in Neurobiology 2022; 102326.

Bonini L, Rotunno C, Arcuri E, Gallese V. Mirror neurons 30 years later: implications and applications. Trends in Cognitive sciences 2022; 26(9): 767-781.

Bornkessel-Schlesewsky I, and Schlesewsky M. Reconciling Time, Space and Function: A New Dorsal-Ventral Stream Model of Sentence Comprehension. Brain and Language 2013; 125(1): 60-76.

Brandt A, Gebrian M, Slevc L. R. The role of musical development in early language acquisition. In: Thaut MH and Hodges DA, eds. The Oxford Handbook of Music and the Brain. Oxford University Press, 2019 (Pb, 2021): 567-591.

Brette R. Is coding a relevant metaphor for the brain? Behavioral and Brain Sciences 2019; 42: e215.

Burkhardt P, Colgren F, Medhus A, Digel L, Naumann B, Soto-Angel J, et al. 2023 Syncytial nerve net in a ctenophore adds insights on the evolution of nervous systems. Science 2023; 380(6642): 293-297.

Buzsáki G. and Draguhn A. Neuronal oscillations in cortical networks. Science 2004; 304(5679): 1926-9

Buzsáki G, Tingley D. Space and time: The hippocampus as a sequence generator. Trends in Cognitive Sciences 2018; 22(10): 853-869.

Canolty R. and Knight R. T. The functional role of cross-frequency coupling. Trends in Cognitive Sciences 2010; 14(11): 506-515.

Cebolla A. M, Cheron G. Understanding Neural Oscillations in the Human Brain: From Movement to Consciousness and Vice Versa. Frontiers in Psychology 2019; 10:1930.

Cheung V. K. M, Harrison P. M. C, Meyer L, Pearce M. T, Haynes J-D. Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus and auditory cortex activity. Current Biology 2019; 29:4084-4092.

Cheyne P. Encoded and Embodied Rhythm. In: Cheyne P, Hamilton A, Paddison M, eds. The Philosophy of Rhythm: aesthetics, music, poetics. Oxford University Press 2019: 255-271.

Chomsky N. Language architecture and its import for evolution. Neuroscience and Biobehavioral Reviews 2017; 81: 295-300.

Clark A. Surfing Uncertainty. Prediction, action and the embodied mind. Oxford University Press, New York, 2016.

Clayton M. Entrainment and the social origins of musical rhythms. In: Cheyne P, Hamilton A, Paddison M, eds. The Philosophy of Rhythm: aesthetics, music, poetics. Oxford: Oxford University Press, 2020: 183-198.

Couzin I. D. Synchronization: The key effective communication in animal collectives. Trends in Cognitive Sciences 2018; 22(10): 844-846.

Damiano L. and Stano P. A Wetware Embodied AI? Towards an autopoietic organizational approach grounded in synthetic biology. Frontiers in Bioengineering and Biotechnology 2021; 9:724023.

Damm L, Varoqui D, De Cock V. C, Dalla Balla S, Bardy B. Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neuroscience and Biobehavioral Reviews 2020; 112:553-584.

Dehaene S, Meyniel F, Waconge C, Wang L, Pallier C. The neural representation of sequences: From transition probabilities to algebraic patterns and linguistic trees. Neuron 2015; 88: 2-19.

Dehaene S, Al Roumi F, Lakretz Y, Planton S, Sablé-Meyer M. Symbols and mental programs: a hypothesis about human singularity. Trends in Cognitive Sciences 2022; 26(9): 751-766.

Draguhn A. and Sauer J. F. Body and mind: how somatic feedback signals shape brain activity and cognition (editorial). European Journal of Physiology 2023; 475(1):1-4.

Drayton L. and Furman M. Thy mind, thy brain and time. Trends in Cognitive Sciences 2018; 22(10): 841-843.

Eichenbaum H. On the integration of space, time, and memory. Neuron 2017; 95(5): 1007-1018.

Eling P, Whitaker H. History of aphasia: A broad overview. In: Hillis AE, Fridriksson J, eds. Handbook of Clinical Neurology. Elsevier B.V. 2022; 185: 3-24.

Elimari N. and Lafargue G. Network neuroscience and the adapted mind: rethinking the role of network theories in evolutionary psychology. Frontiers in Psychology 2020; 11:545632.

Feinberg T.E, Mallatt J. Phenomenal consciousness and emergence: Eliminating the explanatory gap. Frontiers in Psychology 2020; 11: 1041.

Fitch W. T. Rhythmic cognition in humans and animals: distinguishing meter and pulse perception. Frontiers in Systems Neuroscience 2013; 7: 68.

Fitch W. T. Dance, music, meter and groove: A forgotten partnership. Frontiers in Human Neuroscience 2016; 10(64):1-7.

Friederici A. D. Evolutionary neuroanatomical expansion of Broca’s region serving a human-specific function. Trends in Neurosciences 2023; 46(10):786-796.

Glass L. Synchronization and rhythmic processes in physiology. Nature 2001; 410(6825): 277-284.

Graybiel A. M. Habits, Rituals, and the Evaluative Brain. Annual Reviews of Neuroscience 2008; 31:359-387.

Greenfield M. D, Honing H, Kotz S. A, Ravignani A. Synchrony and rhythm interaction: from the brain to behavioural ecology. Philosophical Transactions of the Royal Society B 2021; 376:20200324.

Hauser M. D, Chomsky N, Fitch W.T. The faculty of Language: What is it, who has it, and how did it evolve? Science 2002; 298: 1569-1579.

Hauser M. D, Watumull J. The Universal Generative Faculty: The source of our expressive power in language, mathematics, morality, and music. Journal of Neurolinguistics 2017; 43(B): 78-94.

Hickok G. The dual stream model of speech and language processing. Handbook of Clinical Neurology, eds. Argye E. Hillis and Julius Fridriksson, Elsevier 2022; 185: 57-69.

Hodges D. A. Music through the lens of cultural neuroscience. In: Thaut MH, Hodges DA, eds. The Oxford Handbook of Music and the Brain. Oxford University Press, 2019: 19-41.

Honing, H. Without it no music: beat induction as a fundamental musical trait. Annals of the New York Academy of Sciences 2012; 1252:85-91.

Honing, H. Musicality as an upbeat to music: Introduction and research agenda. In: Honing H, ed. The Origins of Musicality, Cambridge, MA: MIT Press, 2018: 3-20.

Jacob P. "Intentionality". In: Zalta EN, Nodelman U, eds. The Stanford Encyclopedia of Philosophy. Spring 2023 edition.

Janata P, Tomic S. T, Haberman J. M. Sensorimotor coupling in music and the psychology of the groove. Journal of Experimental Psychology: General 2012; 141(1): 54-75.

Kasdan A. V, Burgess A. N, Pizzagalli F, Scartozzi A, Chern A, Kotz S. A, et al., Identifying a brain network for musical rhythm: A functional neuroimaging meta-analysis and systemic review. Neuroscience and Biobehavioral Reviews 2022; 136: 104588.

Kleisner K. The semantic morphology of Adolf Portmann: a starting point for biosemiotics of organic form? Biosemiotics 2008; 1: 207-219.

Kotz S, Ravignani A, Fitch W. T. The evolution of rhythm processing. Trends in Cognitive Sciences 2018; 22(10): 896-910.

Lakatos P, Gross J, Thut G. A new unifying account of the roles of neuronal entrainment. Current Biology 2019; 29: R890-R905.

Lake B. M, and Baroni M. Human-like systematic generalization through a meta-learning neural network. Nature 2023; 623: 115-121.

Large E.W, Roman I, Kim J. C, Cannon J, Pazdera J. K, Trainor L. J, et al., 2023. Dynamic models for musical rhythm perception and coordination. Frontiers in Computational Neuroscience 2023; 17:1151895.

Lenc T, Merchant H, Keller P. E, Honing H, Varlet M, Nozardan S. Mapping between sound, brain and behaviour: four-level framework for understanding rhythm processing in humans and non-human primates. Philosophical Transactions of the Royal Society B 2021; 376:2020035.

Llinás R. R. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective. Frontiers in Cellular Neuroscience 2014; 8:320.

Loui P. and Guetta R. E. Music and attention, executive function, and creativity.

In: Thaut MH, Hodges DA, eds. The Oxford Handbook of Music and the Brain. Oxford University Press, 2019: 263-284.

Maguire E. A, Gadian D. G, Johnsrude I. S, Frith C. D. Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences 2000; 97(8): 4398-4403.

Matthews T. E, Witek M. A. G, Lund T, Vuust P, Penhune V. B. The sensation of groove engages motor and reward networks. Neuroimage 2020; 214: 116768.

Mehr S. A, Singh M, Knox D. M, Ketter M, Pickens-Jones D, Atwood S, et al., 2019. Universality and diversity in human song. Science 2019; 366;eaax0868:1-17.

Merchant H, Grahn J, Trainor L. J, Rohrmeier M, Fitch W. T. Finding the beat: A neural perspective across humans and non-human primates. In: Honing H, ed. The Origins of Musicality. Cambridge, MA: MIT Press, 2018: 171-203.

Morillon B, and Baillet S. Motor origin of temporal predictions in auditory attention. Proceedings of the National Academy of Sciences of the United States of America 2017; 114(42), E8913–E8921.

Müller E. J, Munn B. R, Aquino K. M, Shiner J. M, Robinson P. A. The music of the hemispheres: Cortical Eigenmodes as a physical basis for large-scale brain activity and connectivity patterns. Frontiers in Human Neuroscience 2022; 16: 1062487.

Néda Z, Ravasz E, Brechet Y, Vicsek T, Barabási A. L. The sound of many hands clapping. Nature 2000; 403: 849-850.

Patel A. D. Vocal learning as a preadaptation for the evolution of human beat perception and synchronization. Philosophical Transactions of the Royal Society B 2021; 376: 20200326.

Peretz I, Vuvan D. T, Lagrois M-E, Armony J. L. Neural overlap in processing music and speech. In: Honing H, ed. The Origins of Musicality. Cambridge, MA: MIT Press, 2018: 205-219.

Peters D. Rhythm, preceding its abstraction. In: Cheyne P, Hamilton A, Paddison M, eds. The Philosophy of Rhythm: aesthetics, music, poetics. Oxford University Press 2019: 110-124.

Petkov C. I, Marslen-Wilson W.D. Editorial overview: The evolution of language as a neurobiological system. Current Opinion in Behavioral Sciences 2018; 21: V-XII.

Petter E. A, Gershman S. J, Meck W. H. Integrating models of interval timing and reinforcement learning. Trends in Cognitive Sciences 2018; 22(10): 911-922.

Pinker S. The cognitive niche: coevolution of intelligence, sociality, and language. Proceedings of the National Academy of Sciences 2010; 107(S2):8993-8999.

Pouw W, Proksch S, Drijvers L, Gamba M, Holler J, Kello C, et al., 2021. Multilevel rhythms in multimodal communication. Philosophical Transactions of the Royal Society B 2021; 376: 20200326.

Pulvermüller F. How neurons make meaning: brain mechanisms for embodied and abstract-symbolic semantics. Trends in Cognitive Sciences 2013; 17(9): 458-470.

Ravignani A. and Madison G. The paradox of isochrony in the evolution of human rhythm. Frontiers in Psychology 2017; 8: 1820.

Robin R. and Ierna C. Christian von Ehrenfels. The Stanford Encyclopedia of Philosophy. Summer 2022 Edition, Edward N. Zalta.

Rosenblum M. and Pikovsky A. Synchronization: from pendulum clocks to chaotic lasers and chemical oscillators. Contemporary Physics 2003; 44(5): 401-416.

Ross J. M. and Balasubramaniam R. Time Perception for Musical Rhythms: Sensorimotor Perspectives on Entrainment, Simulation, and Prediction. Frontiers in Integrative Neuroscience 2022; 916220.

Roy A, Perlovsky L, Beshold T.R, Weng J, Edwards J.C.W. Editorial: Representation in the brain. Frontiers in Psychology 2018; 9: 1410.

Sauvé S. A, Bolt E. L, Nozaradan S, Zendel B. R. Aging effects on neural processing of rhythm and meter. Frontiers in Aging Neuroscience 2022; 14: 848608.

Schirmer A, Meck W. H, Penney T. B. The socio-temporal brain: connecting people in time. Trends in Cognitive Sciences 2016; 20(10): 760-772.

Schön D. and Morillon B. Music and language. In: Thaut MH, Hodges DA, eds. The Oxford Handbook of Music and the Brain. Oxford University Press, 2019: 592-622.

Schurger A, Hu PB, Pak J, Roskies AL. What is the Readiness Potential? Trends in Cognitive Sciences 2021; 25(7): 558-570.

Seitz R, Angel H-F. Belief-formation – A driving force in evolution. Brain and Cognition 2020; 140:105548.

Sheya A, Smith L. Development weaves brains, bodies and environments into cognition. Language, Cognition and Neuroscience 2019;34(10):1266-1273.

Sridharan D, Levitin D.J, Chafe C. H, Berger J, Menon V. Neural dynamics of event segmentation in music: Converging evidence for dissociable ventral and dorsal networks. Neuron 2007; 55:521-532.

Stolk A, Blokpoel M, Van Rooij I, Toni I. On the generation of shared symbols. In: Willems R, ed. Cognitive Neuroscience of Natural Language Use. Cambridge University Press, 2015: 201-227.

Tigre Moura F. Artificial Intelligence, Creativity, and Intentionality: The need for a paradigm shift. Journal of Creative Behavior 2023; 57(3): 336-338.

Tomasello M. Origins of Human Communication. Cambridge, MA: MIT Press, 2008.

Trainor L. J. The origin of music: auditory scene analysis, evolution, and culture in musical creation. In: Honing H, ed. The Origins of Musicality. Cambridge, MA: MIT Press, 2018: 81-112.

Trainor L. J. and Marsh-Rollo S. Rhythm, meter and timing: The heartbeat of musical development. In: Thaut MH, Hodges DA eds. The Oxford Handbook of Music and the Brain, Oxford University Press, 2019; (Pb, 2021): 592-622.

Vanden Bosch der Nederlanden C. M, Taylor J. E. T, Grahn J. A. Neural basis of rhythm perception. In: Thaut MH, Hodges DA, eds. The Oxford Handbook of music and the Brain. Oxford University Press, 2019 (Pb ed. 2021);165-186.

Von Schnehen A, Hobeika L, Huvent-Grelle D, Samson S. Sensorimotor synchronization in healthy aging and neurocognitive disorders. Frontiers in Psychology 2022; 13: 838511.

Wark B, Lundstrom B. N, Fairhall A. Sensory adaptation. Current Opinion Neurobiology 2007; 17: 423-429.

Weiller C, Reisert M, Glauche V, MussonM, Rijntjes M. The dual-loop model for combining external and internal worlds in our brain. NeuroImage 2022; 119583.

Wilkins R. W. Network Neuroscience: an introduction to graph theory network-based techniques for music and brain imaging research. In: Thaut MH, Hodges DA, eds. The Oxford Handbook of Music and the Brain. Oxford University Press, 2019 (Pb ed. 2021): 122-144.

Wilson M. and Cook P. F. Rhythmic entrainment: Why humans want to, fireflies can’t help it, pet birds try, and sea lions have to be bribed. Psychonomic Bulletin and Review 2016; 23(6): 1647-1659.

Womelsdorf T. and Fries P. The role of neuronal synchronization in selective attention. Current Opinion in Neurobiology 2007; 17:1-7.

Zhu J, and Fox Harrell D. System Intentionality and the Artificial Intelligence Hermeneutic Network: the role of intentional vocabulary. UC Irvine 2009.

Zuidema W, Hupkes D, Wiggins G. A, Scharff C, Rohrmeier M. Formal models of structure building in music, language, and animal song. In: Honing H, ed. The Origins of Musicality, ed. Cambridge, MA: MIT Press, 2018: 253-286.

Published

23.03.2024

How to Cite

von Domburg, P. (2024). Rhythm in Music, Encoded in Neural Networks, and in the Mind. Journal of NeuroPhilosophy, 3(1). https://doi.org/10.5281/zenodo.10874430